On the number of trees in Z^{d}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 253523
(http://iopscience.iop.org/0305-4470/25/12/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:39

Please note that terms and conditions apply.

On the number of trees in \mathcal{Z}^{d}

E J Janse van Rensburg \dagger
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada

Received 29 November 1991, in final form 17 March 1992

Abstract

The number of trees weakly embedded in the hypercubic lattice, t_{n}, is considered. It is known that $\lim _{n \rightarrow \infty} t_{n}^{1 / n}=\lambda_{0}$, and that $t_{n} \leqslant \lambda_{0}{ }^{n}$. These facts are proven by noting that trees satisfy a supermultiplicative inequality $t_{n} t_{m} \leqslant$ t_{n+m}. In this paper a submultiplicative property is derived for trees of the form $t_{n+m} \leqslant(n+m)^{3 \alpha \log (n+m)} t_{n} t_{m}$. Consequently, there exists a constant δ such that $O\left(\exp \left[-\delta(\log n)^{2}\right] \lambda_{0}{ }^{n} \leqslant t_{n} \leqslant \lambda_{0}{ }^{n}\right.$.

1. Introduction

The number of walks embedded in the hypercubic lattice, c_{n}, has been the subject of numerous studies. Hammersley and Morton (1954) proved the existence of a connective constant κ, such that $\lim _{n \rightarrow \infty} c_{n}^{1 / n}=\mathrm{e}^{\kappa}$. The connective constant is also called the conformational entropy (Whittington and Soteros 1991) and $\mathrm{e}^{\kappa}(=\mu)$ is called the growth constant. c_{n} is a submultiplicative function, i.e. $c_{n} c_{m} \geqslant c_{n+m}$. Consequently, by the theory of subadditive functions, one notes that $c_{n} \geqslant \mu^{n}=\mathrm{e}^{\kappa n}$ (Hille 1948). A remarkable effort by Hammersley and Welsh (1962) established that

$$
\begin{equation*}
\mu^{n} \leqslant c_{n} \leqslant \mu^{n} \mathrm{O}\left(\mathrm{e}^{\gamma \sqrt{n}}\right) \tag{1.1}
\end{equation*}
$$

where γ is a positive constant. Equation (1.1) rigorously limits the deviation of c_{n} from pure exponential growth. Kesten (1964) improved slightly on (1.1). It is widely believed that c_{n} deviates from exponential growth at most by a power, in analogy with magnetism (of which it is the 'zeroth component' limit). A remarkable effort by Hara and Slade (1991a) (using the lace expansion) established that $c_{n}=A \mu^{n}\left[1+O\left(n^{-\varepsilon}\right)\right]$ in five and more dimensions, where $\epsilon \leqslant \frac{1}{2}$ is any fixed positive real number.

In investigations of the function u_{n}, the number of self-avoiding polygons in the hypercubic lattice proved generally more successful. It is easily seen that $u_{n} u_{m} \leqslant$ ($d-1) u_{n+m}$, so that $u_{n} /(d-1)$ is a supermultiplicative function. (Here, d is the number of dimensions, and n in u_{n} takes only even values.) Consequently, one can show that $\lim _{n \rightarrow \infty}\left[u_{n} /(d-1)\right]^{1 / n}=\mu$ exists, and has the same value as the growth constant for walks (Hammersley 1961). In addition, $u_{n} \leqslant(d-1) \mu^{n}$. A lower bound on the number of polygons was computed by Kesten (1964), and an improved upper bound calculated by Madras (1991) established that

$$
\mathrm{O}\left(n^{-6(d-1.5)}\right) \mu^{n} \leqslant u_{n} \leqslant \mathrm{O}\left(n^{q}\right) \mu^{n} \quad \text { where } \quad \begin{cases}q \leqslant-\frac{1}{2} & \text { if } d=2 \tag{1.2}\\ q \leqslant-1 & \text { if } d=3 \\ q<-1 & \text { otherwise }\end{cases}
$$

[^0]These results limit the deviation from pure exponential growth (of u_{n}) to at most a power law, but the real challenge would be to prove that $\lim _{n \rightarrow \infty}$ $\left[\log \left(u_{n} / \mu^{n}\right)\right] / \log n$ exists.

In this paper we study the function t_{n}, the number of trees weakly embedded in the hypercubic lattice. The objective is to find limits on the deviation from pure exponential behaviour with n, such as was done for walks in (1.1) and polygons in (1.2). t_{n} is a supermultiplicative function: $t_{n} t_{m} \leqslant t_{n+m}$ (Klein 1981). Consequently, there exists a growth constant λ_{0} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}^{1 / n}=\lambda_{0} \tag{1.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
t_{n} \leqslant \lambda_{0}{ }^{n} \tag{1.4}
\end{equation*}
$$

Again, there is strong evidence that the deviation of t_{n} from pure exponential behaviour is bound by a power, i.e. $t_{n} \sim C n^{-\theta} \lambda_{0}{ }^{n}$ (where $a_{n} \sim f(n)$ means $a_{n}=f(n)[1+\mathrm{O}(1)]$, and where C is a constant and θ is a critical exponent. (For numerical evidence see the calculations by Glaus (1985), Caracciolo and Glaus (1985), Adler et al (1988), Ishinabe (1989).) In more than eight dimensions Hara and Slade (1991b, 1992) made this rigorous, again using the lace expansion. θ is believed to be equal to 1 in two dimensions, and $\frac{3}{2}$ in three dimensions, as calculated from the dimensional reduction of Parisi and Sourlas (1981). In this paper we show that there exists a positive constant δ such that

$$
\begin{equation*}
\mathrm{O}\left(\mathrm{e}^{-\delta(\log n)^{2}}\right) \lambda_{0}^{n} \leqslant t_{n} \leqslant \lambda_{0}^{n} \tag{1.5}
\end{equation*}
$$

Equation (1.5) is not as strong as that of Hara and Slade (1991b, 1992), but is valid in every number of dimensions more than or equal to two, in contrast to the laceexpansion results, which are valid only in more than eight dimensions. The lower bound in (1.5) is a direct result of a submultiplicative property of t_{n}, which is proved in section 2 . In section 2 we also prove the main result, and we conclude the paper with a few remarks in section 3.

2. A submultiplicative inequality

The botiom veriex and the top veriex of a tree T_{n} with n edges is defined as the first and the last vertices found in a lexicographic ordering of the vertex set of T_{n}. A fundamental construction performed on trees is concatenation (Klein 1981). Let T_{n} be a tree with n edges, and top vertex t_{T}, and let S_{m} be a tree with m edges and bottom vertex $b_{S} . T_{n}$ and S_{m} are concatenated by identifying t_{T} with b_{S}. The result is a tree $T_{n} \oplus S_{m}$ with $n+m$ edges. Since the construction is a one-to-one map, one finds the supermultiplicative property for t_{n}, the number of lattice trees (modulo a translation in the hypercubic lattice): $t_{n} t_{m} \leqslant t_{n+m}$.

A branch of a tree T_{n} is itself a tree S_{m} which is joined to the rest of T_{n} at a single vertex v. If one removes the branch from T_{n}, then the result is again a tree $T_{n}-S_{m}$ with $n-m$ edges. These definitions lead naturally to the following proposition.

Proposition 1. Let T_{n} be a tree, and let $m(\leqslant n)$ be a positive integer. Then there is a branch S_{q} of T_{n}, such that $\lceil m / 2 d\rceil \leqslant q \leqslant m$.

Proof. If $m=n$, then T_{n} is the branch; so suppose that $m<n$. Let p_{1} be any vertex in T_{n}. Incident on p_{1} are $2 d$ branches of T_{n}, and let the i th branch contain u_{i} edges. (Some of the branches could of course have no edges; it makes the analysis easier if one thinks of these as 'empty' branches). Then, $\sum_{i=1}^{2 d} u_{i}=n$. Suppose that $u_{i}<m / 2 d, \forall i$. Then $n=\sum_{i=1}^{2 d} u_{i}<m<n$. This is a contradiction, so there exists an i such that $u_{i} \geqslant m / 2 d$. Observe that u_{i} is always an integer, hence, $u_{i} \geqslant\lceil m / 2 d\rceil$.

If $u_{i} \leqslant m$, then the proposition is proven. So suppose that $u_{i}>m$. Let this branch with u_{i} edges be B^{1} and suppose that it has $b_{1}\left(=u_{i}\right)$ edges. We now show that one can find a branch of B^{1}, B^{2} with b_{2} edges, such that $b_{1}>b_{2} \geqslant\lceil m / 2 d\rceil$. If one iterates this procedure, then finally one must find a branch B^{j} with b_{j} edges such that $m \geqslant b_{j} \geqslant\lceil m / 2 d\rceil$. Only a finite number of iterations are necessary; T_{n} is a finite object.

Let p_{2} be any vertex in B^{1}, such that $p_{2} \neq p_{1}$, and let the branch of B^{1} incident on p_{2} which excludes p_{1}, be E. (There are $2 d-1$ branches of B^{1} incident on p_{2}, exchuding the branch which contains p_{1}, and together they form E.) Suppose that E consists of branches incident on p_{2} which have v_{i} edges each, for $1 \leqslant i \leqslant 2 d-1$ (i.e. index the branches with $1 \leqslant i \leqslant 2 d-1$). Then, $\sum_{i=1}^{2 d-1} v_{i}<b_{1}$, since at least one edge (incident on p_{1}) is not counted under the summation. There are two cases to consider: case 1 has $\sum_{i=1}^{2 d-1} v_{i} \geqslant m$. Observe then that there exists an i such that $v_{i} \geqslant\lceil m /(2 d-1)\rceil \geqslant\lceil m / 2 d\rceil$; let this i th branch be B^{2}, and $b_{2}=v_{i}$. Observe then that $b_{1}>b_{2} \geqslant\lceil m / 2 d\rceil$.

Case 2 has $\sum_{i=1}^{2 d-1} v_{i}<m$. Here, there are two subcases: case 2 a has $\sum_{i=1}^{2 d-1} v_{i} \geqslant$ $\lceil m / 2 d\rceil$. Observe that in this case E is a branch in the desired size range. Case 2 b has $\sum_{i=1}^{2 d-1} v_{i}<\lceil m / 2 d\rceil$. Here, one must add edges to E until it has the desired size. The first edge to be added is incident on p_{2}; it is the first edge on the shortest path between p_{2} and p_{1}. This augmented branch E^{1} is rooted in T_{n} at a new vertex p_{2}^{1}. Incident on p_{2}^{1} are $2 d-2$ branches of B^{1} (none of which contains p_{1}). Augment E^{1} by adding these branches to it one by one. There are three possible outcomes: (i) after the last branch is added to p_{2}^{1}, the augmented branch is still too small. In this case rename it E^{1}, and repeat the construction (i.e. add an edge on the shortest path between p_{2}^{1} and p_{1} to the augmented branch, and consider the new set of $2 d-2$ branches); (ii) one might add a branch to E^{1} which will increase its size from below $\lceil m / 2 d\rceil$ to above m. In this case the branch one adds has at least $m-\lceil m / 2 d\rceil \geqslant\lceil m / 2 d\rceil$ edges. Name this branch B^{2}, and observe that it has b_{2} edges, where $b_{1}>b_{2} \geqslant\lceil m / 2 d\rceil$ (since p_{1} is not a vertex in this branch); (iii) the augmented branch E^{1} is in the desired size range after a number of branches have been added at p_{2}^{1}. Situation (i) cannot be repeated indefinitely, and eventually must lead to (ii) or (iii), since B^{1} is finite. This proves the proposition.

Naturally, proposition 1 results in the following corollary.
Corollary 1. Let T_{n} be a tree and let m be any positive integer such that $m \leqslant n$. Then k branches $\left\{B^{i}\right\}_{i=1}^{k}$ (where B^{i} is a branch with b_{i} edges) can be pruned from T_{n} such that
(i) $\sum_{i=1}^{k} b_{i}=m$,
(ii) $m-\sum_{i=1}^{l} b_{i} \geqslant b_{l+1} \geqslant\left\lceil\left(m-\sum_{i=1}^{l} b_{i}\right) / 2 d\right\rceil$, and
(iii) $k \leqslant(\log m) / \log [2 d /(2 d-1)]$.

Proof. The aim is to prune k branches from T_{n} such that a total of m edges are removed. The worst possible situation arises if one manages to prune the least number of edges from the tree at every step. That is, if p edges are to be removed, then only $[p / 2 d\rceil$ are removed. Under these circumstances, suppose that l edges must be removed at the j th step in the construction. Then the branch B^{j} is pruned and $b_{j} \geqslant\lceil l / 2 d\rceil$ is the number of edges in B^{j}. At the $(j+1)$ th step, at most $l-\lceil l / 2 d\rceil=$ $\lfloor(2 d-1) l / 2 d\rfloor$ edges remain to be removed. If this formula is iterated, then one notes that at the j th step, at most $\lfloor(2 d-1)\lfloor(2 d-1)\lfloor\cdots\lfloor(2 d-1) m / 2 d\rfloor \cdots\rfloor / 2 d\rfloor / 2 d\rfloor$ remain to be removed (there are j factors in the expression). After k branches are removed, a total of m edges have been taken out. This occurs when the above expression attains the value 1 after k iterations, and 0 after $k+1$ iterations. But $m[(2 d-1) / 2 d\rfloor^{k} \geqslant\lfloor(2 d-1)\lfloor(2 d-1)\lfloor\cdots\lfloor(2 d-1) m / 2 d\rfloor \cdots\rfloor / 2 d\rfloor / 2 d\rfloor=1$, or $k \leqslant \log m / \log [2 d /(2 d-1)]$. This proves (iii). (i) is easily seen: observe that at least one edge can be removed at any stage, and proposition 1 indicates that it is never necessary to remove more edges than necessary. If at the j th step not enough edges edges are taken out, then proposition 1 is applied again. (ii) is a direct consequence of proposition 1 . This proves the corollary.

Corollary 1 contains enough information to allow one to prove a submultiplicative property for t_{n}.

Theorem 1. t_{n} satisfies the following inequality in any number of dimensions $d \geqslant 2$:

$$
t_{n+m} \leqslant(n+m)^{3 \alpha \log (n+m)} t_{n} t_{m}
$$

where $\alpha=1 / \log [2 d /(2 d-1)]$.
Proof. Let T_{n+m} be any tree. Apply corollary 1 to prune at most $\alpha \log m$ (where $\alpha=1 / \log [2 d /(2 d-1)])$ branches containing m edges from the tree. Any one of these branches can be put back at most $(n+m) m$ ways into the tree. Concatenate the branches (as they are pruned) into a new tree containing m edges. The total number of ways one can cut the tree to find the original branches is at most $m^{\alpha \log m}$. Hence, $t_{n+m} \leqslant\left[(n+m) m^{2}\right]^{\log m} t_{n} t_{m}$. This is better than the claimed inequality.

We can now prove (1.5) immediately.
Theorem 2. The number of trees weakly embedded in the hypercubic lattice, t_{n}, in d dimensions, is bound by

$$
\mathrm{e}^{-24 \alpha} n^{-24 \alpha} \mathrm{e}^{-9 \alpha(\log n)^{2}} \lambda_{0}{ }^{n} \leqslant t_{n} \leqslant \lambda_{0}{ }^{n}
$$

where $\alpha=1 / \log [2 d /(2 d-1)]$.
Proof. This result is a direct consequence of theorem 2 and a property of submultiplicative functions: if $t_{n+m} \leqslant g(n+m) t_{n} t_{m}$, then $\left(\log t_{n}\right) / n \geqslant \log \lambda_{0}+$ $[\log g(n)] / n-4 \sum_{m=2 n}^{\infty}[\log g(m)] /[m(m+1)]$ (Hammersley 1962). Observe that
$\log g(n)=3 \alpha(\log n)^{2}$ (theorem 1). Here, λ_{0} is the growth constant. The last step is to bound the infinite sum. We do that by an integral:

$$
\sum_{m=2 n}^{\infty} \frac{(\log m)^{2}}{m(m+1)} \leqslant \int_{2 n}^{\infty} \frac{[\log (x-1)]^{2}}{x(x-1)} \mathrm{d} x \leqslant \int_{n}^{\infty}\left(\frac{\log x}{x}\right)^{2} \mathrm{~d} x
$$

The integral can be computed using standard tables (Gradshteyn and Ryznik 1965). Substituting the result into the original expression gives $\left(\log t_{n}\right) / n \geqslant \log \lambda_{0}$ $9 \alpha(\log n)^{2} / n-24 \alpha(\log n) / n-24 \alpha / n$. Exponentiate this to find the lower bound. The upper bound is a direct consequence of supermultiplicativity $\left(t_{n} t_{m} \leqslant t_{n+m}\right)$.

To find (1.5), put $\delta=9 \alpha$.

3. Conclusions

Weakly embedded trees can be thought of as (weakly embedded) lattice animals with cyclomatic index zero. c-animals are lattice animals with cyclomatic index c uniformly weighted (on the number of edges). Let $a_{n}(c)$ be the number of c-animals with cyclomatic index c and n edges. Then $t_{n}=a_{n}(0)$. It is rigorously known that (Soteros and Whittington 1988)

$$
\begin{equation*}
A\binom{\epsilon n}{c} a_{n}(0) / 3^{c} \leqslant a_{n+c}(c) \tag{3.1}
\end{equation*}
$$

if n is large enough and where $0<\epsilon \leqslant C$; A and C are fixed, positive constants. Also, it is known that (Whittington et al 1983)

$$
\begin{equation*}
a_{n}(c) \leqslant(2 d n)^{c} a_{n}(0) \tag{3.2}
\end{equation*}
$$

If the bounds on $a_{n}(0)$ in theorem 2 are substituted into (3.1) and (3.2), then the following bounds are found on c-animals:

$$
\begin{equation*}
\mathrm{O}\left(n^{c-24 \alpha}\right) \mathrm{e}^{-\delta[\log (n-c)]^{2}} \lambda_{0}^{n} \leqslant a_{n}(c) \leqslant(2 d n)^{c} \lambda_{0}{ }^{n} . \tag{3.3}
\end{equation*}
$$

Of course, while we found interesting bounds on t_{n} in this paper, it is by no means a final word on this problem. The real challenge would be first to proof the analogous bounds for polygons (equation (1.2)) for trees, where the corrections to pure exponential growth are bound by powers of n. A proof that the critical exponent θ exists remains elusive in eight or less dimensions. So far, equation (1.5) is the strongest bound known.

Acknowledgment

S G Whittington was instrumental in the development of the ideas in this paper.

References

Adler J, Meir Y, Harris A B, Aharony A and Duarte J A M S 1988 Phys. Rev. D 384941
Caracciolo S and Gtaus U 1985 J. Stat. Phys. 4195
Glaus U 1985 J. Phys. A: Math. Gen. 181609
Gradshteyn I S and Ryznik I M 1965 Table of Integrals, Series and Products (London: Academic)
Hammersley J M 1961 Proc. Camb. Phil. Soc. 57516

- 1962 Proc. Camb. Phil. Soc. 58235

Hammersley J M and Morton K W 1954 J. R. Stat. Soc. B 1623
Hammersley J M and Welsh D J A 1962 Quart J. Math Oxford 13108
Hara T and Stade G 1991a Bull. Amer. Math. Soc. 25417

- 1991b J. Stat. Phys. 591469
- 1992 Preprint

Hille E 1948 Functional Analysis and Semi-Groups (Amer. Math. Soc. Colloq. Publ.) vol 31 (New York: AMS)
Ishinabe T 1989 J. Phys. A: Math. Gen. 224419
Kesten H 1964 J. Math. Phys. 51128
Klein D J 1981 J. Chem. Phys. 755186
Madras N 1991 Random Walks, Brownian Motion and Interacting Particle Systems ed R Durrett and H Kesten (Boston: Birkhauser)
Parisi G and Sourlas N 1981 Phys. Rev. Lett. 46871
Soteros C E and Whittington S G 1988 J. Phys. A: Math. Gen. 212187

Whittington S G, Torrie G M and Gaunt D S 1983 J. Phys. A: Math. Gen. 161695

[^0]: \dagger Email address: bvanrens@alchemy.chem.utoronto.ca

