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Abstract The number of trees weakly embedded in the hypercubic lanice, t,, is 
considered. It is known that limn-- t;'" = A,, and that i, < XO". These 
facts are proven by noting that trees satisfy a supermultiplicative inequality i,t, < 
in+,. In this paper a submuilip~calive pmperIy is derived for trees of the form 
in+, < (n+ m)30'o~("+m)tnim. Consequently, there exists a constant 6 such that 
O(exp[-6(logn)2]Xo" < i n  < XO". 

1. Introduction 

The number of walks embedded in the hypercubic lattice, c,, has been the subject 
of numerous studies. Hammersley and Morton (1954) proved the existence of a 
connective constant IC, such that CA'" = e'. The connective constant is also 
called the conformational enrmpy (Whittington and Soteros 1991) and e' ( = p )  is 
called the growth constant. c, is a submultiplicative function, i.e. cncm > c,+,. 
Consequently, by the theory of subadditive functions, one notes that c, 3 pm = ern 
(Hille 1948). A remarkable effort by Hammersley and Welsh (1962) established that 

where y is a positive constant. Equation (1.1) rigorously limits the deviation of c, 
from pure exponential growth. Kesten (1964) improved slightly on (1.1). It is widely 
believed that c, deviates from exponential growth at most by a power, in analogy with 
magnetism (of which it is the 'zeroth component' limit). A remarkable effort by Hara 
and Slade (1591a) (using the lace expansion) established that c, = Ap"[l+O(n-r)] 
in five and more dimensions, where E < 

In investigations of the function U,, the number of self-avoiding polygons in the 
hypercubic lattice proved generally more successful. It is easily seen that unum < 
(d - l)un+,,,. so that u, / (d  - 1) is a supermultiplicative function. (Here, d is the 
number of dimensions, and n in U, takes only even values.) Consequently, one can 
show that lim,,,[u,/(d- 1)]lIn = p exists, and has the same value as the growth 
constant for walks (Hammersley 1961). In addition, U, < (d  - 1 ) ~ " .  A lower bound 
on the number of polygons was computed by Kesten (1964). and an improved upper 
bound calculated by Madras (1991) established that 

pn < c, < pn o(e'fi) (1.1) 

is any fixed positive real number. 

q G - 4  i f d = 2  

q <  -1 otherwise. 
)p"' < U, < O(nq)pn where if d = 3 (1.2) o( -6(d-1.5) 
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These results limit the deviation from pure exponential growth (of U,) to at 
most a power law, but the real challenge would be to prove that limnem 
[log(un/pn)]/ log n exists. 

In this paper we study the function t,, the number of trees weakly embedded 
in the hypercubic lattice. The objective is to find limits on the deviation from pure 
exponential behaviour with n, such as was done for walks in (1.1) and polygons in 
(1.2). t ,  is a supermultiplicative function: t,t, < tCtm (Klein 1981). Consequently, 
there exists a growth constant A, such that 

Moreover, 

(1.4) 

Again, there is strong evidence that the deviation of t ,  from pure exponential 
behaviour is bound by a power, i.e. t, - Cn-OA," (where a, - f (n)  means 
a, = f ( n ) [ l  + O(1))). and where C is a constant and 0 is a critical exponent. 
(For numerical evidence see the calculations by Glaus (1985), Caracciolo and Glaus 
(1985), Adler et al (1988). Ishinabe (1989).) In more than eight dimensions Hara and 
Slade (1991b, 1992) made this rigorous, again using the lace expansion. 0 is believed 
to be equal to 1 in two dimensions, and in three dimensions, as calculated from 
the dimensional reduction of Parisi and Sourlas (1981). In this paper we show that 
there exists a positive constant 6 such that 

Quation (1.5) is not as strong as that of Hara and Slade (1991b, 1992), but is valid 
in every number of dimensions more than or equal to two, in contrast to the lace- 
expansion results, which are valid only in more than eight dimensions. The lower 
bound in (1.5) is a direct result of a submultiplicative property of t,, which is proved 
in section 2. In section 2 we also prove the maln resuit, and we conciude the paper 
with a few remarks in section 3. 

2. A submultiplicative inequality 

inti wttom v m a  anu me fop vena UL a ucti 1, wiui 'iz cugc> w UGLIILCU dr\ uic IUM 

and the last vertices found in a lexicographic ordering of the vertex set of T,. A 
fundamental construction performed on trees is concatenation (Klein 1981). Let T,, 
be a tree with n edges, and top vertex t,, and let S ,  be a tree with m edges and 
bottom vertex b,. T, and S, are concatenated by identifying tT with b,. The result 
is a tree T, @ S ,  with n + m edges. Since the construction is a one-to-one map, one 
finds the supermultiplicative property for t,, the number of lattice trees (modulo a 
translation in the hypercubic lattice): t,t, < t,+,. 

A branch of a tree Tn is itself a tree S ,  which is joined to the rest of T,, at 
a single vertex w. If one removes the branch from T,,, then the result is again a 
tree T, - S, with n - m edges. These definitions lead naturally to the following 
proposition. 

-_ L ~ . . ~ ~ ~ ~  .~~~ .-> .<. ~ ~~~~~~~~ -*. --- - ... !.I. -.I..-- :,. dAC..".4 ^^ .L^ C:-& 
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Propsiftion 1. Let T,, be a tree, and let m (< n) be a positive integer. Then there 
is a branch S, of T,,, such that rm/Z(il < < m. 

Proof. If m = n, then T,, is the branch; so suppose that m < n. Let p ,  be any 
vertex in T,. Incident on p, are 2 d  branches of T,, and let the ith branch contain ui 
edges. (Some of the branches could of course have no edges; it makes the analysis 
e&i if ~ i i e  %iik af i k s e  5s 'eiiipiy' branchesj. ~ h e i ,  ui = n. auppuse 
that U; < m / 2 d ,  Vi .  Then n = E?:, ui < m < n. This is a contradiction, so 
there exists an i such that ui 2 m / 2 d .  Observe that vi is always an integer, hence, 
21; >, ("I. 

If U; < m, then the proposition is proven. So suppose that ui > m. Let this 
branch with ui edges be B' and suppose that it has b, (= ui) edges. We now show 
that one cm find a branch of El, a"? with b, edges, such that b, >b ,  2 [miiuy.  
If one iterates this procedure, then finally one must find a branch BJ with b, edges 
such that m 2 b, 3 [m/24.  Only a finite number of iterations are necessary; T,, is 
a finite object. 

Let p, be any vertex in E', such that p, # p , ,  and let the branch of B' incident 
on p ,  which excludes p , ,  be E. (There are 2d - 1 branches of B' incident on p,, 

E consists of branches incident on p, which have vi edges each, for 1 6 i < 2d - 1 
(i.e. index the branches with 1 i < 2d - 1). Then, x::;' vi < b,, since at least 
one edge (incident on p , )  is not counted under the summation. There are two cases 
to consider: case 1 has XTf;' U; 2 m. Observe then that there exists an i such that vi >, , [ m / ( 2 d  - 1)1 3 [m/24;  let this ith branch be B2, and b, = v i .  Observe then 
tnat bl > b, > imi2cii. 

Case 2 has E::;' vi < m. Here, there are two subcases: case 2a has ztf;' vi >, 
[ m / 2 d ] .  Observe that in this case E is a branch in the desired size range. Case 2b 
has X;:.!' vi < [ m / 2 d ] .  Here, one must add edges to E until it has the desired 
size. The first edge to be added is incident on p,; it is the first edge on the shortest 
path between p ,  and p,. This augmented branch E' is rooted in T, at a new 
vertex p i .  Incident on p i  are 2d - 2 branches of B1 (none of which contains pl). 
Augment E 1  by adding these branches to it one by one. There are three possible 
outcomes: (i) after the last branch is added to p i ,  the augmented branch is still too 
small. In this case rename it E', and repeat the construction (i.e. add an edge on 
the shortest path between p i  and p, to the augmented branch, and consider the new 
set of 2d - 2 branches); (ii) one might add a branch to E' which will increase its 
size from beiow r m / 2 d ]  to above m. In this case the branch one adds has at least 
m - [ m / 2 d ]  3 [m/2d] edges. Name this branch 8,. and observe that it has b, 
edges, where b, > b, [ m / 2 d l  (since p, is not a vertex in this branch); (iii) the 
augmented branch E' is in the desired size range after a number of branches have 
been added at p i .  Situation (i) cannot be repeated indefinitely, and eventually must 

0 

" - - - 

ex&u&c,g *,e branch which mntaiis pl, togei'ler A&ey furm 3.j  suppme Ahat 

lead to (ii) or (iii), since E' is finite. This proves the proposition. 
Naturally, proposition 1 results in the following corollary. 

Coro//my 1. Let T, be a tree and let m be any positive integer such that m < n. 
Then k branches {Bi)L1 (where B' is a branch with bi edges) can be pruned from 
T,, such that 

k (i) Ci=, bi = m, 
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I (ii) m - bi 2 bit, 2 1(m - Cl,, bi)/24. and 
(iii) k < (log m)/ log[2d/(2d - l)]. 

Proof. The aim is to prune k branches from T, such that a total of m edges 
are removed. The worst possible situation arises if one manages to prune the least 
number of edges from the tree at every step. That is, if p edges are to be removed, 

be removed at the j th  step in the construction. Then the branch Bj is pruned and 
bj 2 11/24 is the number of edges in B J .  At the ( j + l ) t h  step, at most 1 -  11/24 = 
L(2d - 1)1/2dj edges remain to be removed. If this formula is iterated, then one 
notes that at the j th  step, at most [(2d-1)[(2d-l)[. . . [(2d-l)m/2dJ . . .J/2dJ /2d] 
remain to be removed (there are j factors in the expression). After k branches are 

mA& KClLq whe.fl fhp &ovp 
expression attains the value 1 after k iterations, and 0 after k + 1 iterations. But 
m[(2d-1)/2dIk > L(2d- 1)[(2d-1)[...1(2d-l)m/2dJ...]/2d]/2dJ = 1, 01 
k < log m /  log[2d/(2d - l)]. This proves (iii). (i) is easily seen: observe that at 
least one edge can be removed at any stage, and proposition 1 indicates that it is never 
necessary to remove more edges than necessary. If at the j t h  step not enough edges 
edges are taken out. then proposition 1 is applied again. (ii) is a direct consequence 

U 

Corollary 1 contains enough information to allow one to prove a submultiplicative 

than nnhr r n I 9 , f l  3-n r a m n x r d  llnrln. thara rirnimctnnnar r..nnr\rn th-t I orlnnr -.sot 
L...,.. ".A', , y ,  1 Y ,  U L I  L I I I . " . I " .  ".IUS... U.WI I.,b",l,.,,a,,bbo, 0"yy"Uc "L.aL b s u p 3  ","Dl 

rpEQvpdi a total of m edges havp bppfl i.l.pfi ogt. 

of proposition 1. This proves the corollary. 

property for t,. 

Theorem I .  t ,  satisfies the following inequality in any number of dimensions d > 2: 

< ( n  + m)3o1++4l"tm 

where o = 1/ log[2d/(2d - l)]. 

Proof. Let T,+, be any tree. Apply corollary 1 to prune at most a log m (where 

these branches can be put back at most (n + m)m ways into the tree. Concatenate 
the branches (as they are pruned) into a new tree containing m edges. The total 
number of ways one can cut the tree to find the original branches is at most mO'Osm. 
Hence, t,,+,,, < [(n + m)mZ]alogmlntm. This is better than the claimed inequality. 

0 

a = ! / !og(?d/:?d - 1);: b:azches. Kxtainiag z edges fiOm :he :ree. P q  ose Of 

We can now prove (1.5) immediately. 

Theorem 2. The number of trees weakly embedded in the hypercubic lattice, t,, in 
d dimensions, is bound by 

e - 2 4 a n - 2 4 ~ e - 9 0 ( ~ ~ g 7 ~ ) a ~  n < 1 < 
0 \ n .  

where a = 1/ log[2d/(2d - l)]. 

Pmf. This result is a direct consequence of theorem 2 and a property of sub- 
multiplicative functions: if tntm < d n .  + m)tntm,  then ( 1 o g L ) l n  3 log& + 
[iogg(n)]/n - 4C~=, , [ iogg(m)J / [m(m + 111 (Hammenley 1962). Observe that 
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log g(n) = 3a(log TI)' (theorem 1). Here, A, is the growth constant. The last step 
is to bound the infinite sum. We do that by an integral: 

The integral can be computed using standard tables (Gradshteyn and Ryznik 1965). 
Substituting the result into the original expression gives (logt,)/n 2 log A, - 
9 a ( l 0 g n ) ~ / n  - 24a(log TI)/. - 24a/n. Exponentiate this to find the lower bound. 
The upper bound is a direct consequence of supermultipticativity ( t , tm < in+,,,). 0 

To find (l.S), put 6 = 9a. 

3. Conclusions 

Weakly embedded trees can be thought of as (weakly embedded) lattice animals 
with cyclomatic index zero. c-animals are lattice animals with cyclomatic index c 
uniformly weighted (on the number of edges). Let a , ( c )  be the number of c-animals 
with cyclomatic index c and n edges. Then 1 ,  = a,(O). It is rigorously known that 
(Soteros and Whittington 1988) 

if TI is large enough and where 0 < E < C; A and C are fixed, positive constants. 
Also, it is known that (Whittington et al 1983) 

a , ( c )  < (2dn)ca,(0) ' (3.2) 

If the bounds on a,(o) in theorem 2 are substituted into (3.1) and (3.2), then the 
following bounds are found on c-animals: 

~ ( n ~ - ~ ~ ~  ) , - W 4 ~ - c ) I 2 ~  0 n < . a,(c) < (2dnYAon. (3.3) 

Of course, while we found interesting bounds on 1, in this paper, it is by no 
means a final word on this problem. The real challenge would be first to proof 
the analogous bounds for polygons (equation (1.2)) for trees, where the corrections 
to pure exponential growth are bound by powers of it .  A proof that the critical 
exponent 0 exists remains elusive in eight or less dimensions. So far, equation (1.5) 
is the strongest bound known. 
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